15 research outputs found

    Functional features defining the efficacy of cholesterol-conjugated, self-deliverable, chemically modified siRNAs

    Get PDF
    Progress in oligonucleotide chemistry has produced a shift in the nature of siRNA used, from formulated, minimally modified siRNAs, to unformulated, heavily modified siRNA conjugates. The introduction of extensive chemical modifications is essential for conjugate-mediated delivery. Modifications have a significant impact on siRNA efficacy through interference with recognition and processing by RNAi enzymatic machinery, severely restricting the sequence space available for siRNA design. Many algorithms available publicly can successfully predict the activity of non-modified siRNAs, but the efficiency of the algorithms for designing heavily modified siRNAs has never been systematically evaluated experimentally. Here we screened 356 cholesterol-conjugated siRNAs with extensive modifications and developed a linear regression-based algorithm that effectively predicts siRNA activity using two independent datasets. We further demonstrate that predictive determinants for modified and non-modified siRNAs differ substantially. The algorithm developed from the non-modified siRNAs dataset has no predictive power for modified siRNAs and vice versa. In the context of heavily modified siRNAs, the introduction of chemical asymmetry fully eliminates the requirement for thermodynamic bias, the major determinant for non-modified siRNA efficacy. Finally, we demonstrate that in addition to the sequence of the target site, the accessibility of the neighboring 3\u27 region significantly contributes to siRNA efficacy

    Aptamer-based multiplexed proteomic technology for biomarker discovery

    Get PDF
    Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine

    Occurrence of the aminoacyl-tRNA synthetases in high-molecular weight complexes correlates with the size of substrate amino acids

    Get PDF
    AbstractOne of the distinctive and mysterious features of mammalian aminoacyl-tRNA synthetases (AARSs) is the existence of stable high-molecular weight complexes containing 10 out of 20 AARSs. The composition and structure of these complexes are conserved among multicellular animals. No specific function associated with these structures has been found, and there is no evident rationale for a particular separation of AARSs in “complex-bound” and “free” forms. We have demonstrated a strong association between the occurrence of AARSs in the complexes and the volume of their substrate amino acids. The significance of this association is discussed in terms of the structural organization of translation in the living cell

    Mapping Contacts between Escherichia coli

    No full text

    The different role of high- and low-affinity metal ions in cleavage by a tertiary stabilized cis hammerhead ribozyme from tobacco ringspot virus

    No full text
    The aim of this study was to investigate the dependence of the observed cleavage rates (k(obs)) of a tertiary stabilized hammerhead ribozyme (tsHHRz) and of a minimal hammerhead ribozyme (mHHRz), both derived from tobacco ringspot virus, on the type and concentration of divalent metal ions in order to interpret the functional role of high-affinity ions detected by electron paramagnetic resonance (EPR). To measure the fast cleavage of the cis tsHHRz, a new method using chemically synthesized fluorescent-labeled RNAs has been developed. The tsHHRz cleavage rate is up to 20-fold faster than that of the mHHRz under similar conditions. The presence of Mn2+ ions leads to a 60-fold faster cleavage than in the presence of Mg2+ ions. The functional role of the high-affinity ion was evaluated using neomycin B inhibition studies. Neomycin B reduces the cleavage activity of both ribozymes but the inhibitory effect on tsHHRz is much weaker than that on the mHHRz. EPR data had shown that neomycin B displaces both low-affinity and high-affinity Mn2+ ions from the mHHRz, but only low-affinity ions from tsHHRz. Inhibition of the tsHHRz activity may be due to the displacement of weakly bound Me2+ ions required for the local folding leading to cleavage, whereas both the high-affinity ion required for folding and the weakly bound ions are replaced in the mHHRz. The high-affinity metal ion is required for the stabilization of the global HHRz structure, but is not involved in catalysis or stabilization of the transient state.</p

    Stable tRNA-based phylogenies using only 76 nucleotides

    No full text
    tRNAs are among the most ancient, highly conserved sequences on earth, but are often thought to be poor phylogenetic markers because they are short, often subject to horizontal gene transfer, and easily change specificity. Here we use an algorithm now commonly used in microbial ecology, UniFrac, to cluster 175 genomes spanning all three domains of life based on the phylogenetic relationships among their complete tRNA pools. We find that the overall pattern of similarities and differences in the tRNA pools recaptures universal phylogeny to a remarkable extent, and that the resulting tree is similar to the distribution of bootstrapped rRNA trees from the same genomes. In contrast, the trees derived from tRNAs of identical specificity or of individual isoacceptors generally produced trees of lower quality. However, some tRNA isoacceptors were very good predictors of the overall pattern of organismal evolution. These results show that UniFrac can extract meaningful biological patterns from even phylogenies with high level of statistical inaccuracy and horizontal gene transfer, and that, overall, the pattern of tRNA evolution tracks universal phylogeny and provides a background against which we can test hypotheses about the evolution of individual isoacceptors

    Mimics of Yeast tRNA Asp

    No full text

    The contributions of dsRNA structure to Dicer specificity and efficiency

    No full text
    Dicer processes long double-stranded RNA (dsRNA) and pre-microRNAs to generate the functional intermediates (short interfering RNAs and microRNAs) of the RNA interference pathway. Here we identify features of RNA structure that affect Dicer specificity and efficiency. The data presented show that various attributes of the 3′ end structure, including overhang length and sequence composition, play a primary role in determining the position of Dicer cleavage in both dsRNA and unimolecular, short hairpin RNA (shRNA). We also demonstrate that siRNA end structure affects overall silencing functionality. Awareness of these new features of Dicer cleavage specificity as it is related to siRNA functionality provides a more detailed understanding of the RNAi mechanism and can shape the development of hairpins with enhanced functionality
    corecore